Smart Polymeric Nano-Constructs in Drug Delivery

Concept, Design and Therapeutic Applications
Autor: India) (Hrsg.) Department of Pharmaceutical Sciences Suresh (Pioneer Scientist P Vyas
CHF 249.00
ISBN: 978-0-323-91248-8
Einband: Kartonierter Einband (Kt)
Verfügbarkeit: Folgt in ca. 15 Arbeitstagen
+ -

Smart Polymeric Nano-Constructs in Drug Delivery: Concept, Design and Therapeutic Applications provides a thorough discussion of the most state of the art material and polymer exploitations for the delivery of bioactive(s) as well as their current and clinical status. The book enables researchers to prepare a variety of smart drug delivery systems to investigate their properties as well as to discover their uses and applications. The novelty of this approach addresses an existing need of exhaustively understanding the potential of the materials including polymeric drug delivery systems that are smartly designed to deliver bioactive(s) into the body at targeted sites without showing side effects. The book is helpful for those in the health sector, specifically those developing nanomedicine using smart material-based nano-delivery systems. Polymers have unique co-operative properties that are not found with low-molecular-weight compounds along with their appealing physical and chemical properties, constituting the root of their success in drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery: Concept, Design and Therapeutic Applications discusses smart and stimuli responsive polymers applicable in drug delivery, followed detailed information about various concepts and designing of polymeric novel drug delivery systems for treatment of various type of diseases, also discussing patents related to the field. The book helps readers to design and develop novel drug delivery systems based on smart materials for the effective delivery of bioactive that take advantage of recent advances in smart polymer-based strategies. It is useful to those in pharmaceutical sciences and related fields in developing new drug delivery systems.

Smart Polymeric Nano-Constructs in Drug Delivery: Concept, Design and Therapeutic Applications provides a thorough discussion of the most state of the art material and polymer exploitations for the delivery of bioactive(s) as well as their current and clinical status. The book enables researchers to prepare a variety of smart drug delivery systems to investigate their properties as well as to discover their uses and applications. The novelty of this approach addresses an existing need of exhaustively understanding the potential of the materials including polymeric drug delivery systems that are smartly designed to deliver bioactive(s) into the body at targeted sites without showing side effects. The book is helpful for those in the health sector, specifically those developing nanomedicine using smart material-based nano-delivery systems. Polymers have unique co-operative properties that are not found with low-molecular-weight compounds along with their appealing physical and chemical properties, constituting the root of their success in drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery: Concept, Design and Therapeutic Applications discusses smart and stimuli responsive polymers applicable in drug delivery, followed detailed information about various concepts and designing of polymeric novel drug delivery systems for treatment of various type of diseases, also discussing patents related to the field. The book helps readers to design and develop novel drug delivery systems based on smart materials for the effective delivery of bioactive that take advantage of recent advances in smart polymer-based strategies. It is useful to those in pharmaceutical sciences and related fields in developing new drug delivery systems.

Autor India) (Hrsg.) Department of Pharmaceutical Sciences Suresh (Pioneer Scientist P Vyas
Verlag Elsevier Science & Technology
Einband Kartonierter Einband (Kt)
Erscheinungsjahr 2022
Seitenangabe 624 S.
Ausgabekennzeichen Englisch
Masse H23.5 cm x B19.1 cm x D0.0 cm 450 g